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Rheological behavior of a solution of particles aggregating on the containing walls

Armand Ajdari*
Laboratoire de Physico-Chimie The´orique, Esa CNRS 7083, Ecole Supe´rieure de Physique et Chimie Industrielles,

10 rue Vauquelin, F-75231 Paris Cedex 05, France
~Received 29 June 1998!

The possibility of macroscopic shear-thickening behavior is shown for a solution containing particles that
tend to stick and grow aggregates on the walls containing the solution. A simple one-dimensional model is
used with two basic ingredients: shear tends to peel off the aggregate and the viscosity of the solution increases
with particle concentration. In addition to shear thickening, instabilities at fixed driving velocity can also occur.
In cylindrical geometries it is even possible to reach situations displaying instabilities both at fixed stress
~torque! and at fixed velocity.@S1063-651X~98!13311-1#

PACS number~s!: 47.50.1d, 83.50.Ax, 82.70.Gg
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I. INTRODUCTION

Rheology of complex systems is a growing field of inte
est and much fascinating behavior has been reported ran
from shear-thinning or shear-thickening behavior to flow
duced phase transitions and instabilities. This behavior
result from some underlying thermodynamic phase tra
tions or be purely dynamical in nature@1–5#. The difficulty
in modeling even simple systems is to incorporate conco
tantly the effect of the developing structures on the fl
pattern, and the resulting deformation of the structures th
selves@6–9#.

A very simple model system is here introduced to sh
that complex ‘‘effective’’ rheological behavior can resu
from the inhomogeneity of a system due to its interact
with the walls of the measuring device. Namely, we consi
a solution containing particles~suspension, emulsion, etc!
and suppose that these tend to adsorb on one of the wa
such a way that this adsorption triggers the macroscopic
gregation of the particles~heterogeneous nucleation!. An ap-
plied flow can, however, peel this aggregate if it is stro
enough. The peeled particles dissolve and diffuse in
neighbor solution.

We consider this simple system first in a planar sh
geometry before turning to a situation where the flow is
duced by the shearing of two concentric cylinders.

II. MODEL

Consider the very simple one-dimensional~1D! model of
Fig. 1. A gap of thicknessL separates two parallel plates, th
upper one moving atVx while the lower one is at rest. An
aggregate of thicknessh(t), taken rigid, limits the actually
flowing region toh(t),z,L, the local particle volume frac
tion beingf(z,t). The volume fraction of the particles in th
aggregate is denoted by a constantr. The flowing region is
taken locally Newtonian with a viscosityh(f).

The dynamics are described through simple equations
~i! Diffusion of particles in the solution:
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2f, ~1!

with boundary conditions

]zf~z5L !50, ~2!

D]zf~z5h!1@r2f~h!#dth50. ~3!

These together with Eq.~1! grant the conservation of th
total number of particlesN5f0L5rh1*h

Lfdz, with f0 the
average concentration of particles between the walls.

~ii ! Mechanical equilibrium of the flowing fluid:

]zs~z!50, ~4!

wheres is the local shear stress given by

s5h~f!]zv, ~5!

with h the local viscosity of the solution andv(z) the flow
velocity. Boundary conditions for the flow are

v~L !5V, v~h!50. ~6!

~iii ! Eventually we describe the interface motion by a ph
nomenological expression:

dth5 f „f~h!…2g~s!. ~7!

The first term on the right hand side describes the adsorp
of the particles onto the aggregate while the second descr
the peeling of the aggregate due to shear forces. This pic
of course implies a local peeling of the aggregate rather t
the induction of fractures within its bulk. Bothf and g are
typically monotonic increasing functions.

FIG. 1. The interface position is fixed by the competition b
tween the adsorption of diffusing particles and the peeling of
aggregate due to the flow.
6294 © 1998 The American Physical Society
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At steady statef(z) is a constant related toh by the
conservation lawf0L5rh1f(L2h). The steady-state
equation of statesSS(ġ) is thus given by

s5h~f!ġ
L

L2h
, f ~f!5g~s!. ~8!

To investigate the resulting rheological behavior, let
first look at a simple case~model zero! in which ~i! f (f)
5af and ~ii ! g(s)50 for s,sc and g(s)5(s2sc)g8
otherwise~with g8 a constant!.

III. FIRST INSIGHTS FROM MODEL ZERO

Let us consider the steady-state solution in this model
rest (V50) all the particles are in the aggregate that oc
pies a fractionf0 /r of the gap.

Two limiting regimes can easily be identified.~i! For low
shear (s,sc), there is no peeling, soh5Lf0 /r and f
50. The observed effective viscosity is

heff5sL/V5h~0!
1

12f0 /r
. ~9!

~ii ! For high shears.sM5sc1af0 /g8, all the aggregate
is peeled away so thath50 andf5f0 :

heff5h~f0!. ~10!

The threshold shear ratesġ5V/L for the two regimes are
ġc5sc(12f0 /r)/h(0) andġM5(sc1af0 /g8)/h(f0).

This simple analysis shows that the system appears~a!
shear thinning ifh(f0)/h0,(12f0 /r)21, and ~b! shear
thickening in the opposite case. For lowf0 , one expects
h(f0)/h0.112.5f0 so that regime~b! can indeed occur
for r.0.4. Although in case~a! ġc,ġM is always verified,
case~b! leads to an additional distinction as one can ha
ġc.ġM ~for g8 large enough! which automatically leads to
multivaluedness in thes(ġ) diagram~see Fig. 2!. Between
the limiting regimes~i! and ~ii !, thes(ġ) curve depends on
the explicit form ofh(f).

So, the dependence of the viscosity on concentration
induce a shear-thickening behavior with indication of po
sible instabilities at fixed shear rate.

IV. STABILITY ANALYSIS

More generally, i.e., independently of whether or n
there is a thresholdsc for peeling, one expects shear thic
ening and multivaluedness ifh is a sufficiently strong func-
tion of f. To investigate the relation with possible instabi
ties, let us discuss the linear stability of the steady-s
solution ~8! for this simple unidimensional model. This wi
clearly illustrate the difference between systems at impo
stresss and systems at imposed velocityV ~or average shea
rate ġ5V/L). The basic features are most easily obtain
supposing that diffusion is very fast (D→`) so that the
homogenization off is almost instantaneous compared
interface motion. Then, at fixed stresss, a slight perturba-
s
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tion dh of the interface position around a steady-state so
tion ~8! evolves according to:

dtdh5 f 8~f!df52 f 8~f!
r2f

L2h
dh. ~11!

With r.f the steady-state solution is thus stable@typically
f 8(f).0#, as a slight increase of the aggregate thickn
leads to a decrease off and thus to a decrease of the a
sorption of particles: peeling thus takes over inducing a s
bilizing decrease of the thickness.

At fixed V things are more complex:

dtdh52F f 8~f!2sg8~s!S dlnh

df
2

1

r2f D Gr2f

L2h
dh.

~12!

The three terms on the right hand side can be easily un
stood, e.g., for the case of an increase of the aggregate th
nessdh.0: ~i! as the concentrationf drops adsorption de
creases,~ii ! asf drops, so does the viscosity, resulting in
lower peeling stress,~iii ! however, the fluid gapL2h has
also decreased resulting at fixedV in an increase of the peel
ing stress. The first and third term are thus stabilizi
whereas the second one is destabilizing@as we clearly expec
g8(s).0#. Thus we get an instability criterion for evolutio
at imposed velocity:

dlnh

df
.

1

r2f
1

f 8~f!

sg8~s!
. ~13!

Note that from the equations~8! describing the steady
state solutions5sSS(V), one easily gets

FIG. 2. The solid lines depict the small and high shear beha
as described by Eqs.~9! and~10!: depending on parameters, variou
situations can occur~a!, ~b!, ~c!. In the small shear branch the she
is too weak to peel the aggregate. In the high shear branch it i
high that the aggregate has been completely peeled off. The

necting branch linking (ġc ,sc) to (ġM ,sM) is not represented; its
precise shape depends onh(f) along Eq.~8!.
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dsSS

dV
5

sSS

V F12
sg8~s!

f 8~f! S d lnh

df
2

1

r2f D G21

. ~14!

Hence the instability criterion of the steady-state solut
at a fixed velocity is the usual (dsSS/dV),0, which results
in a discrete jump in the stress upon increase of the c
trolled shear rate~see Fig. 3!. The concordance of these tw
criteria results from supposing fast diffusion: the system
then completely described by two parameters amongs, V,
andh ~or equivalentlyf through the conservation law!. If we
write formally the relaxation at fixed stressdtdh5Adh
5A(]h/]V)sdV, and that at fixed velocitydtdh5Bdh
5B(]h/]s)Vds, then moving along the line of steady-sta
solutionssSS(V) corresponds to changing bothV and s so
that dtdh50, which leads to dsSS/dV52(A/B)(]h/
]V)s(]s/]h)V5(A/B)(]s/]V)h which relates Eqs.~11!
and ~12! to Eq. ~14!, given that at fixedh ~and thusf),
(]s/]V)h5s/V.

Including diffusion. It is also possible to perform the lin
ear stability analysis including the diffusion dynamics, e.
for fixed velocityV. Writing that the perturbationdh evolves
asdh5dh0evt, one deducesv from

L2h

r2f
~v2v0!5 f 8~f!@12Lcoth~L!#, ~15!

with L25v(L2h)2/D and

v052
r2f

L2hF f 8~f!2sg8~s!S dlnh

df
2

1

r2f D G . ~16!

Thus in the limitD→`, L→0, andv→v0 in agreement
with Eq. ~12!. For a finite value ofL, v has the same sign a
v0 but a smaller value. The instability criterion (v.0) is
thus still Eq.~14!. For small values ofD, Eq. ~15! leads to
v.D with a prefactor dependent on the gap thickness
on the dynamics of adsorption and peeling.

Conclusion. As in the early analysis of the model zer
instabilities upon increase of the velocity are more likely
occur for a strong dependence of the viscosity on concen

FIG. 3. Situation~a! can occur for flat and cylindrical geom
etries, situation~b! only in the geometry of Fig. 4~a!. The full ar-
rows indicate the stress jump of the system driven at contro
shear rate resulting in hysteretic behavior, while the dashed arr
in ~b! indicate the shear rate jumps for a driving at controlled sh
stress. The sections with negative slope correspond to steady
solutions unstable under controlled shear rate, but stable under
trolled shear stress. The central section of~b! which separates the
two negative slope sections corresponds to solutions unstab
both situations.
n

n-

s

,

d

a-

tion and large increase ofg with s. Note that the occurrence
of instabilities is implicitly dependent on the initial and fixe
average concentrationf0 .

V. CYLINDRICAL GEOMETRIES

Let us turn to the case of a Couette geometry~Fig. 4!.
Formally we distinguish here the case where the partic
tend to aggregate on the inner cylinder~case A!, from the
case where they tend to aggregate on the outer cylinder~case
B!. The control parameters are now either the torque~per
unit length! on the outer cylinderG5sext2pL2 or the veloc-
ity of this outer cylinderV5V/L. Throughout this section
we will consider fast diffusion so that the concentrationf in
the gap is homogeneous. An effective average shear rate
be defined by comparison with the case of a uniform fluid
the gap between the inner and outer cylinders~radii R andL)
for which sext5h@2R2/(L22R2)#(V/L). Thus we can de-
fine ġ5@2R2/(L22R2)#(V/L) as an effective average she
rate andheff5sext/ġ as an effective viscosity.

A. Case A: Aggregate on the inner cylinder

Let us consider that the aggregate extends from the in
cylinder ~radiusR) to a radiush. Then the stress in the ga
(h,r ,L) is easily obtained,s(r )5s ru5h@2Lh2/(L2

2h2)#V/r 2, so that the outer stresssext and the stress on th
aggregates int are simply

sext5h~f!
2h2

L22h2
V/L, s int5h~f!

2L2

L22h2
V/L,

~17!

where f and h are related by the conservation equati
(L22h2)f1(h22R2)r5(L22R2)f0 with f0 the average
concentration. The evolution of the interface is now given
dth5 f (f)2g(s int).

Model zero. The analysis of model zero leads again to tw
limiting branches. Fors int,sc (ġ,ġm), no peeling occurs,
the thickness is constanth5h0 , and the apparent viscosity i
heff5h0(h0 /R)21/(12f0 /r). For large shear (ġ.ġM), the
aggregate is completely peeled andheff5h(f0). Thus the
ratio heff(ġ→`)/heff(ġ→0) is smaller by a factor (R/h0)2

d
s
r
ate
n-

in

FIG. 4. The outer cylinder rotates while the inner is fixed. T
aggregate is taken to form~a! on the inner cylinder~case A!, ~b! on
the outer cylinder~case B!.
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than in a planar geometry favoring effective shear-thinn
behavior. However, the ratioġM /ġm has the same value a
in the planar case.

Stability. A linear stability analysis can be performed as
Sec. IV. If V ~or V) is fixed we get as in the planar case

dtdh5F f 8~f!2s int g8~s int!S dlnh

df
2

1

r2f D Gdf, ~18!

with clearly df of opposite sign todh. So the stability cri-
terion is the same as previously. At fixed torqueG ~or sext)
there is an additional term due to the geometry:

dtdh5S f 8~f!2s int g8~s int!
L22h2

h2

1

r2f D df. ~19!

This additional destabilizing term is due to the inhomoge
ity of the stress~it increases with decreasing distance to t
center!: sext is maintained at a fixed value so that if th
aggregate thickens, its interface is submitted to a wea
peeling stress, favoring further growth. This term diminish
as the curvature is reduced and vanishes in the limitL
2h)/L→0 so that Eq.~11! is recovered.

Looking now at the steady-state torque/angular veloc
relationG5GSS(V), one gets either by direct calculation o
from Eqs.~18! and ~19!

dGSS

dV
5

GSS

V

f 8~f!2s int g8~s int!@~L22h2!/h2#@1/~r2f!#

f 8~f!2s int g8~s int!@dlnh/df21/~r2f!#
.

~20!

There is thus the formal possibility for the interface to
unstable at both fixed torque and fixed angular velocity, i
region of parameter space wheredGSS/dV.0. This would
correspond to the schematic picture of Fig. 3~b!.

B. Case B: Aggregate on the outer cylinder

In this geometry it is convenient to definel such that the
thickness of the aggregate ish5L2 l ~Fig. 4!. The stress on
the aggregate/fluid interface reads now

s int5h~f!
2R2

l 22R2
V/L ~21!

whereas the applied stresssext is sext5( l 2/L2)s int .
Model zero— We quote just the results: forġ,ġm the

gap thickness isl 0 and the effective viscosity isheff
5h0( l 0 /L)21/(12f0 /r), lower than its planar counterpar
For ġ.ġM , then heff5h(f5f0). The ratio ġM /ġm has
again the same value as in the planar case.

Linear stability. At fixed appliedV Eq. ~18! is again re-
covered and thus the same stability criterion. At fixed torq
G ~or fixed sext) the additional term due to the geometry
now stabilizing:
g

-

er
s

y

a

e

dtdh5S f 8~f!1s int g8~s int!
l 22R2

l 2

1

r2f D df. ~22!

This is sound as if the aggregate grows it faces lar
stresses, resulting in a stabilizing increase of the peeling

VI. DISCUSSION

In this crude model we have shown that a rich rheologi
behavior can be expected when a simple solution tend
aggregate on the walls of the measuring device. Most effe
are due to the variation of the viscosity with the concent
tion of particles in the fluid region, the latter increasing
the aggregate is peeled away. The physics at work here
not imply a close to equilibrium description of the exchang
between the aggregate and the solution but rather a c
description of the two antagonistic phenomena: adsorp
and peeling. These effects point out the possible role of c
centration dependence of the viscosities in more comp
systems where obtaining the effective equations of mot
for the interface between phases requires a careful des
tion of the fluxes@3#. One may also want to apply the prese
analysis to situations where aggregation on the bottom p
is induced by gravity and where by shearing the sedim
one modifies the effective viscosity of the solution.

To make our point in a clear way the model chosen
oversimplified: aggregation of particles within the solutio
has been neglected, the assumed form for interface motio
very simple, no elastic deformation of the aggregate has b
incorporated. Also the description was limited to a 1D ana
sis of steady-state solutions neglecting the possible oc
rence of modulations along the flow direction@9# ~the two-
dimensional extension of the 2D stability analysis is left f
further work!. Eventually we have supposed that the agg
gate can appear only on one wall. Although this may be
case if the walls differ in surface chemistry or roughness, o
would expect in a symmetric situation that aggregate
exist on both. In particular in the cylindrical case, once
aggregate initially on the inner cylinder has been complet
peeled away under strong shear, one expects upon decre
of the shear that nucleation occurs first on the outer cylin
where the shear stress is weaker, resulting in additional p
sibility of hysteretic behavior.

We also hope that this kind of analysis, beyond wall
fects, can also help us understand situations where ag
gates~usually fractal-like! exist in a solution due to sticki-
ness of the particles@7,8#. Then additional mechanism
would also enter the picture: fracture in large blocks inste
of peeling, and growth by coalescence of two aggrega
However the mechanism of release of particles in the in
aggregate space upon increase of the flow and its co
quence on the global rheology, in a geometry somew
equivalent to Fig. 4~a! ~an aggregate in shear flow!, could
possibly be modeled as in the present study.
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