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Rheological behavior of a solution of particles aggregating on the containing walls
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The possibility of macroscopic shear-thickening behavior is shown for a solution containing particles that
tend to stick and grow aggregates on the walls containing the solution. A simple one-dimensional model is
used with two basic ingredients: shear tends to peel off the aggregate and the viscosity of the solution increases
with particle concentration. In addition to shear thickening, instabilities at fixed driving velocity can also occur.

In cylindrical geometries it is even possible to reach situations displaying instabilities both at fixed stress
(torque and at fixed velocity[S1063-651X%98)13311-1

PACS numbes): 47.50+d, 83.50.Ax, 82.70.Gg

I. INTRODUCTION (9t¢:D(9§¢a (1)
Rheology of complex systems is a growing field of inter- With boundary conditions
est and much_ fa§cinating behayior hgs been re_ported ranging d,h(z=L)=0, )
from shear-thinning or shear-thickening behavior to flow in-
duced phase transitions and instabilities. This behavior can Dd,¢p(z=h)+[p— ¢(h)]dih=0. 3

result from some underlying thermodynamic phase transis . .
tions or be purely dynamical in natufé—5]. The difficulty These together with Eq.l) grant the conservation of the

, . ; LR . icleBl= oL =ph+ [+ i
in modeling even simple systems is to incorporate concomii 02! number of particledl = goL. = ph t J;,¢dz, with ¢, the

tantly the effect of the developi - the flowV€rage concefntration' pf 'particles betwgen thg walls.
antly the efiect ot the developing structures on the Tow iy Mmechanical equilibrium of the flowing fluid:
pattern, and the resulting deformation of the structures them-
selves[6-9]. d,0(z)=0, 4
A very simple model system is here introduced to show . .
that complex “effective” rheological behavior can result whereo is the local shear stress given by
erm the inhomogeneity of a system due to its interac;ion o=n($)ipv, (5)
with the walls of the measuring device. Namely, we consider ) ) )
a solution containing particlesuspension, emulsion, etc. With 7 the local viscosity of the solution and(z) the flow
and suppose that these tend to adsorb on one of the walls #¢locity. Boundary conditions for the flow are
such a way that this_adsorption triggers the macroscopic ag- v(L)=V, v(h)=0. (6)
gregation of the particlegeterogeneous nucleatio\n ap-
plied flow can, however, peel this aggregate if it is strong (iii) Eventually we describe the interface motion by a phe-
enough. The peeled particles dissolve and diffuse in th&@omenological expression:
neighbor solution.
We consider this simple system first in a planar shear dih=f(¢(h)—g(0). @

geometry before turning to a situation where the flow is in-The first term on the right hand side describes the adsorption
duced by the shearing of two concentric cylinders. of the particles onto the aggregate while the second describes
the peeling of the aggregate due to shear forces. This picture
of course implies a local peeling of the aggregate rather than

Il. MODEL the induction of fractures within its bulk. Bothand g are

. . . . typically monotonic increasing functions.
Consider the very simple one-dimensiofaD) model of ypically 9

Fig. 1. A gap of thicknesk separates two parallel plates, the \Y
upper one moving a¥x while the lower one is at rest. An ;
aggregate of thickneds(t), taken rigid, limits the actually
flowing region toh(t) <z<L, the local particle volume frac-
tion being¢(z,t). The volume fraction of the particles in the L
aggregate is denoted by a constaniThe flowing region is
taken locally Newtonian with a viscosity(¢).

The dynamics are described through simple equations.

(i) Diffusion of particles in the solution:

Aggregate z

FIG. 1. The interface position is fixed by the competition be-
tween the adsorption of diffusing particles and the peeling of the
*Electronic address: armand@turner.pct.espci.fr aggregate due to the flow.
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At steady state(z) is a constant related th by the c
conservation law ¢oL=ph+ ¢(L—h). The steady-state
equation of staterss('y) is thus given by (a)
— f 8
= _— = O
o=n(¢)y = F(H)=9(0). ) y
To investigate the resulting rheological behavior, let us
first look at a simple casénodel zerg in which (i) f(¢) (b) .
=ag¢ and (i) g(o)=0 for o<o. and g(o)=(o—0¢)Qg’
otherwise(with g’ a constant O, (i
(8] (8] ’?
ll. FIRST INSIGHTS FROM MODEL ZERO o] Ye YM
Let us consider the steady-state solution in this model. At o) /
rest (V=0) all the particles are in the aggregate that occu- © M =t
pies a fractiongy/p of the gap. G,
Two limiting regimes can easily be identified) For low : ‘ z o
shear <o), there is no peeling, sh=L¢py/p and ¢ fi’(M ?C i

=0. The observed effective viscosity is

FIG. 2. The solid lines depict the small and high shear behavior

as described by Eq89) and(10): depending on parameters, various

1—¢olp ©) situations can occui), (b), (c). In the small shear branch the shear
is too weak to peel the aggregate. In the high shear branch it is so

(i) For high sheawr> oy =0c.+ad,/g’, all the aggregate high that the aggregate has been completely peeled off. The con-

is peeled away so th&t=0 and¢= ¢y: necti_ng branch linking ¢, o) to (yw o) is not represented; its
precise shape depends gfi¢) along Eq.(8).

7etr= o LIV=17(0)

= . 10
7eir= 7($o) (19 tion sh of the interface position around a steady-state solu-

The threshold shear raté& V/L for the two regimes are tion (8) evolves according to:

=0(1—¢polp)/n(0) andyy=(o.+agye/g’')/ . -
7 Thig( simﬁ?epezngl(ys)is shgvh\//ls t(hact thg%y%térz(;bg%@rs dish="1'(p)6¢= —f’(¢)%5h. 1D
shear thinning if7( o)/ 7o<(1— ¢o/p) 1, and (b) shear
thickening in the opposite case. For loggy, one expects With p> ¢ the steady-state solution is thus stafiigically
7(po) no=1+2.5¢, so that regimeb) can indeed occur f’(¢)>0], as a slight increase of the aggregate thickness
for p>0.4. Although in caséa) '7C< :)’M is always verified, leads to a decrease ¢f and thus to a decrease of the ad-
case(b) leads to an additional distinction as one can havesorption of particles: peeling thus takes over inducing a sta-
Y=y (for g’ large enoughwhich automatically leads to PiliZing decrease of the thickness.

i i W) di ; At fixed V things are more complex:
multivaluedness in ther(y) diagram(see Fig. 2 Between X Ing plex

the limiting regimes(i) and(ii), the o(y) curve depends on . , diny 1 \|lp—¢
the explicit form of (). dt5h:_[f (¢)—og (U)( do p—(b”L—h oh.
So, the dependence of the viscosity on concentration can (12
induce a shear-thickening behavior with indication of pos-
sible instabilities at fixed shear rate. The three terms on the right hand side can be easily under-

stood, e.qg., for the case of an increase of the aggregate thick-
nesssh>0: (i) as the concentratioh drops adsorption de-
creases(ii) as ¢ drops, so does the viscosity, resulting in a
More generally, i.e., independently of whether or notlower peeling stressjii) however, the fluid gap. —h has
there is a threshold-. for peeling, one expects shear thick- also decreased resulting at fix¢dn an increase of the peel-
ening and multivaluedness if is a sufficiently strong func- ing stress. The first and third term are thus stabilizing
tion of ¢. To investigate the relation with possible instabili- whereas the second one is destabilidiag we clearly expect
ties, let us discuss the linear stability of the steady-statg’(o)>0]. Thus we get an instability criterion for evolution
solution (8) for this simple unidimensional model. This will at imposed velocity:
clearly illustrate the difference between systems at imposed
stresso- and systems at imposed velociy(or average shear dny 1 f'(P)

rate y=V/L). The basic features are most easily obtained d¢p = p—¢ Ug'(g)'
supposing that diffusion is very fasD{-») so that the

homogenization of¢ is almost instantaneous compared to  Note that from the equation@) describing the steady-
interface motion. Then, at fixed stress a slight perturba- state solutiorr=og4V), one easily gets

IV. STABILITY ANALYSIS

(13



6296 ARMAND AJDARI PRE 58

-2 0

Y
(a) (b)

a b
FIG. 3. Situation(a) can occur for flat and cylindrical geom- @ ®)

etries, situatior(b) only in the geometry of Fig. @). The full ar- FIG. 4. The outer cylinder rotates while the inner is fixed. The

rows indicate the stress jump of the system driven at controllechggregate is taken to forfa) on the inner cylindefcase A, (b) on
shear rate resulting in hysteretic behavior, while the dashed arrowge outer cylindefcase B.

in (b) indicate the shear rate jumps for a driving at controlled shear

stress. The sections with negative slope correspond to steady-stgte . .
9 P P Y 6hpn and large increase gfwith o. Note that the occurrence

solutions unstable under controlled shear rate, but stable under co f instabilities is implicitly d dent the initial and fixed
trolled shear stress. The central sectionlmfwhich separates the ofinstabilities IS implicitly dependent on the initial and fixe

two negative slope sections corresponds to solutions unstable fverage concentratio .
both situations.

V. CYLINDRICAL GEOMETRIES

doss o5 og'(o) (dIngy 1 -1
&V e |\ de p_¢) . (14 Let us turn to the case of a Couette geoméefFig. 4).
Formally we distinguish here the case where the particles

Hence the instability criterion of the steady-state solutiontend to aggregate on the inner cylindease A, from the

at a fixed velocity is the usuatlgrss/dV) <0, which results ~ case where they tend to aggregate on the outer cyliwdee

in a discrete jump in the stress upon increase of the conB). The control parameters are now either the tor(uer

trolled shear ratésee Fig. 3. The concordance of these two unit length on the outer cylindeF = o, 27L? or the veloc-

criteria results from supposing fast diffusion: the system igty of this outer cylinderQ)=V/L. Throughout this section

then completely described by two parameters amany, we will consider fast diffusion so that the concentratiprin

andh (or equivalentlyg through the conservation lawif we  the gap is homogeneous. An effective average shear rate can

write formally the relaxation at fixed stres$sh=Ash be defined by comparison with the case of a uniform fluid in

=A(oh/oV), 8V, and that at fixed velocityd,sh=Bsh the gap between the inner and outer cylindeaslii R andL)

=B(dh/do)ydc, then moving along the line of steady-state for which e,= 7{2R?/(L?*~R?)](V/L). Thus we can de-

solutionsasd V) corresponds to changing bothando so  fine y=[2R?/(L2—R?)](V/L) as an effective average shear

that d;sh=0, which leads todoss/dV=—(A/B)(dh/  rate andys= oey/y as an effective viscosity.

V) (doldh)y=(AIB)(daldV), which relates Eqgs(11)

and (12) to Eq. (14), given that at fixedh (and thusg),
(daloV),=alV. A. Case A: Aggregate on the inner cylinder

Includjpg diffusiqn It is allso possible to perform 'Fhe lin- Let us consider that the aggregate extends from the inner
ear stability analysis including the diffusion dynamics, e.g..cylinder (radiusR) to a radiush. Then the stress in the gap
for fixed velocityV. Writing that the perturbatiodh evolves  (h<r<L) is easily obtained,o(r)=o,,= 5[2Lh% (L2
as sh= shoe”!, one deduces from —h?)]V/r?, so that the outer stress,, and the stress on the
aggregater;,; are simply

L—h
gl w0 =T (@)L AcotA)], (15 ) )
= V/L; int— V/L,
with A%=w(L—h)2/D and o M) Tm= M) B e

(17)
_r=¢

) , diny 1
wo=— =2 1'(9)-0g (a)(—

| s

d¢ _P—¢ where ¢ and h are related by the conservation equation
(L?—h?) ¢+ (h?2—R?) p=(L%2—R?) ¢, with ¢, the average

Thus in the imitD—, A—0, andw—wy in agreement ., contration. The evolution of the interface is now given by
with Eq. (12). For a finite value of\, w has the same sign as dih=F(¢)—g(on)
int -

wq but a smaller value. The instability criteriom§0) is
thus still Eq.(14). For small values oD, Eq. (15) leads to . .. e .
©=D with a prefactor dependent on the gap thickness and/™ting branches. Fobiy <o (y<ym), N0 peeling occurs,
on the dynamics of adsorption and peeling. e thickness is constaht=hg, and the appargnt y|sc05|ty is
Conclusion As in the early analysis of the model zero, 7eii= 70(No/R)*1/(1— ¢o/p). For large sheary>yy), the
instabilities upon increase of the velocity are more likely to@ggregate is completely peeled angs=7(¢o). Thus the
occur for a strong dependence of the viscosity on concentraatio 7q4(y— %)/ 74 y—0) is smaller by a factorR/hy)?

Model zero The analysis of model zero leads again to two
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than in a planar geometry favoring effective shear-thinning |2_R2

behavior. However, the ratigy, /y,, has the same value as dish= f'(¢)+0im9'(0im)|—2 = S¢. (22
in the planar case.
Stability. A linear stability analysis can be performed as in

Sec. IV. IfQ (or V) is fixed we get as in the planar case  Thjs is sound as if the aggregate grows it faces larger
stresses, resulting in a stabilizing increase of the peeling.

O"ﬂ_;”g 18
a6 a0 19

dt5h=[f’(gé)—aimg’(mm)( VI. DISCUSSION

In this crude model we have shown that a rich rheological
behavior can be expected when a simple solution tends to
aggregate on the walls of the measuring device. Most effects
are due to the variation of the viscosity with the concentra-
tion of particles in the fluid region, the latter increasing as

L2_h2 1 the aggregate is peeled away. The physics at work here does
dish= ( f' ()= o9 (oin)——— _) 8¢. (19  hotimply a close to equilibrium description of the exchanges
hz p—¢ between the aggregate and the solution but rather a crude
description of the two antagonistic phenomena: adsorption
This additional destabilizing term is due to the inhomogeneand peeling. These effects point out the possible role of con-
ity of the stresqit increases with decreasing distance to thecentration dependence of the viscosities in more complex
centej: o, is maintained at a fixed value so that if the Systems where obtaining the effective equations of motion
aggregate thickens, its interface is submitted to a weakder the interface between phases requires a careful descrip-
peeling stress, favoring further growth. This term diminishedion of the fluxeg 3]. One may also want to apply the present
as the curvature is reduced and vanishes in the limit ( @nalysis to situations where aggregation on the bottom plate
—h)/L—0 so that Eq(11) is recovered. is induced by gravity and where by shearing the sediment
Looking now at the steady-state torque/angular velocityone modifies the effective viscosity of the solution.

relationT =T's{€)), one gets either by direct calculation or ~ To make our point in a clear way the model chosen is
from Egs.(18) and(19) oversimplified: aggregation of particles within the solution

has been neglected, the assumed form for interface motion is
very simple, no elastic deformation of the aggregate has been
dlss Tssf'(d)— o9 (o[ (LZ—h?)/hZ][1hp— ¢)] incorporated. Also the description was limited to a 1D analy-
=0 I, ; . sis of steady-state solutions neglecting the possible occur-
d @ 1'(¢)=omg' (gim)[dinyp/dp—1(p—¢)] rence of modulations along the flow directif®] (the two-
(200 dimensional extension of the 2D stability analysis is left for
] o . further work). Eventually we have supposed that the aggre-
There is thus the formal possibility for the interface to begate can appear only on one wall. Although this may be the
unstable at both fixed torque and fixed angular velocity, in &5se if the walls differ in surface chemistry or roughness, one
region of parameter space whet€ss/d2>0. This would  \yould expect in a symmetric situation that aggregate can
correspond to the schematic picture of Figo)3 exist on both. In particular in the cylindrical case, once an
aggregate initially on the inner cylinder has been completely
peeled away under strong shear, one expects upon decreasing
of the shear that nucleation occurs first on the outer cylinder

In this geometry it is convenient to defihesuch that the  where the shear stress is weaker, resulting in additional pos-
thickness of the aggregatehis=L —1 (Fig. 4). The stress on  sjbility of hysteretic behavior.

with clearly 6¢ of opposite sign tosh. So the stability cri-
terion is the same as previously. At fixed tordueor o qy)
there is an additional term due to the geometry:

B. Case B: Aggregate on the outer cylinder

the aggregate/fluid interface reads now We also hope that this kind of analysis, beyond wall ef-
fects, can also help us understand situations where aggre-
2 gates(usually fractal-like exist in a solution due to sticki-
oim=1(¢p) 57— VIL (21)  ness of the particle$7,8]. Then additional mechanisms
=R would also enter the picture: fracture in large blocks instead
of peeling, and growth by coalescence of two aggregates.
whereas the applied stresgy is oex=(12/L?) 0. However the mechanism of release of particles in the inter-

Model zere— We quote just the results: fop<y,, the @dgregate space upon increase of the flow and its conse-
gap thickness isl, and the effective viscosity ispe; ~ dUeNce on the global rheology, in a geometry somewhat
= 70(10/L)21/(1— ¢o/p), lower than its planar counterpart. equivalent to Fig. @) (an aggregate in shear flpywcould

For y>yy, then o= 1(b= o). The ratio Yl Yo has possibly be modeled as in the present study.
again the same value as in the planar case.
Linear stability. At fixed apphe@V Eq. ('18) is again re- ACKNOWLEDGMENTS
covered and thus the same stability criterion. At fixed torque
' (or fixed ooy) the additional term due to the geometry is | would like to thank F. Lequeux and M.E. Cates for
now stabilizing: interesting discussions.
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